Lider u trgovini i distribuciji gasova u Srbiji i BiH

Pon-Sub: 07:00 - 17:00

Radno Vrijeme

+387 55 255 215

Velika Obarska 200, BIJELJINA

Vodonik

Vodonik (H2)

Vodonik (H2) je najlakši između svih hemiskih elemenata i sastavlja 90 % nama poznanatog svemira. Dobija se pomoću parnih reformatora vodene pare, zemnoga gasa ili nekoga drugoga lakog ugljikovodonika, rijetko pomoću elektrolize vode ili rafinerijskim postupcima i to tamo gdje je osigurano dobro snadbjevanje električnom energijom.

Na osnovu svojih fizikalnih i kemijskih svojstava vodonik ime brojne primjene u industriji: kao gorivi plin za specijalne primjene, kao zaštitni plin kod toplinske obrade, u prehrambenoj industriji i elektroindustriji. Zbog velike sposobnosi provođenja topline vodonik se takođe koristi kao plin za hlađenje, npr. strujni generatori.

Više od dvije trećine svjetske proizvodnje vodonika odlazi za potrebe hemijske industrije. Glavni dio se pritom koristi za sintezu amonijaka i metanola. Osim toga hemijska industrija koristi brojne postupke hidriranja. U posljednje vrijeme razgovora se o vodoniku kao alternativnom energentu budućnosti.

Pod normalnim uslovima je u gasovitom agregatnom stanju, nije otrovan, zapaljiv (granica eksplozivnosti u zraku 4-94%).

Skladištenje i Rukovanje

Isporučuje se u u čeličnim bocama, pod pritiskom od 150 bara. Boce su pojedinačne ili u baterijama.

Vodonik nije otrovan niti zagađuje okolinu, stoga nije određena najveća dopustiva količina vodika u okolini. Pri rukovanju sa vodonikom nije neophodna zaštita za kožu ili disajne organe. Tek ako se udahne velika koncentracija vodonika (preko 30% po zapremini), može doći do nedostatka kisika, odnosno do poteškoća pri kretanju, nesvjestice ili gušenja.[18]

Paracelsus je u 16. vijeku otkrio da se pri dobijanju metalnih acida razvija lako zapaljiv gas. Vodonik je otkrio engleski hemičar i fizičar Henry Cavendish 1766. godine, kada je eksperimentirao sa metalima (željezomcinkom i kalajem) i kiselinama. Cavendish je gas koji je pri tome nastajao zbog njegove zapaljivosti nazvao zapaljivi zrak. Kasnije je detaljnije proučavao otkriveni gas a iste godine je i objavio svoja otkrića o njemu.[7]

Precizniju analizu gasa napravio je Antoine Laurent de Lavoisier, koji je vodoniku i dao ime hidrogen. Francuski hemičar je 1787. godine i otkrio gas nezavisno od Cavendisha, kada je u jednom eksperimentu želio pokazati da se hemijskim reakcijama masa polaznih i krajnjih proizvoda ni povećava niti smanjuje. On je vodenu paru uveo u zatvorenu aparaturu te je propustio preko usijanih željeznih opiljaka te je nakon toga ostavio da kondenzira. Pri tome je utvrdio da je masa kondenzirane vode nešto manja od početne količine. Uz to je utvrdio nastanak gasa, čija je masa zajedno sa porastom težine oksidiranog željeza tačno nedostajuća količina mase vodene pare, čime je dokazao svoju teoriju.

Lavoisier je tako nastali gas također proučavao, tako što ga je zapalio pri čemu je gas eksplozivno sagorio. U drugim eksperimentima je pokazao kako se iz gasa može ponovno dobiti voda njegovim sagorijevanjem, te mu je dao naziv hydro-gène (iz grčkog hydōr „voda“ i genes „koji proizvodi“). Stoga se i današnji naziv u većini svjetskih jezika izvodi iz ovog naziva. Slavenski naziv za hidrogen je vodonik ili vodik. Deuterij je otkriven 1932. godine pomoću spektralnih linija konačnih frakcija preostalih nakon isparavanja velikog uzorka tečnog vodonika.[8] Čak i prije toga, 1927. godine Aston i njegovi saradnici su masenom spektrografijom naslutili postojanje težeg izotopa vodonika u približnom odnosu od 1:5000 prema protiju.[9]

Vodik je element sa najmanjom gustoćom. Molekularni vodik (H2) lakši je 14,4 puta od zrakaTačka ključanja mu je -252 °C (21,15 Kelvin), a tačka topljenja -259,14 °C (14,02 Kelvin). Rastvorljivost u vodi iznosi 1,6 mg/l. Pri normalnoj temperaturi i pritisku je gas bez boje, okusa i mirisa.

Termodinamičke osobine (transportni fenomen) su od posebnog značaja zbog malehne molekularne mase i iz nje rezultirajuće velike srednje brzine molekula vodika (1770 m/s pri 25 °C), naprimjer kod Oberthovog efekta raketnog goriva. Na normalnoj sobnoj temperaturi vodik ima najveću difuznu sposobnost, najveću provodljivost toplote i najveću brzinu efuzije od svih gasova. Niska viskoznost upućuje na tro- ili višeatomne realne gasove kao što je n-butan.

Pokretljivost vodika u čvrstoj matrici je izrazito visoka, što je posljedica malehnog promjera molekule. Tako naprimjer vodik može proći kroz materijale poput polietilena ili usijanog kvarcnog stakla. Važan fenomen je njegova izuzetno velika difuzna brzina u željezu, platini i nekim drugim prelaznim metalima, jer se u njima javlja krhkost (lomljivost). U kombinaciji sa visokom rastvorljivošću neki materijali su izloženi izuzetno stopama prodiranja (permeabilnosti). Iz ovog se izvode tehničke koristi obogaćivanja vodikom, ali i tehnički problemi pri transportu, skladištenju i obradi vodika i vodikovih mješavina, jer on prolazi kroz mnoge prostorne prepreke.

Na temperaturama ispod 21,15 Kelvina vodik se kondenzira u bistru, bezbojnu tekućinu. Ovo stanje se označava skraćenicom LH2 (engl. liquid – tečni). Ispod 14,02 K (−259,2 °C) vodik prelazi u čvrsto stanje gradeći kristalni oblik u najgušćoj heksagonalnoj kristalnoj strukturi, pri kojoj je svaki molekul spojen sa dvanaest susjednih. Na tački topljenja pri hlađenju formira se mješavina dva agregatna stanja, takozvani slush.

U uslovima ekstremnog pritiska koji vladaju unutar velikih gasovitih planeta, pretpostavlja se da postoji i metalni vodik, tj. da se javlja u obliku metala. U tom obliku mogao bi i provoditi električnu struju.

Svake godine u svijetu se proizvede i potroši više od 600 milijardi m3 vodika (oko 30 miliona tona). Koristi se u razne industrijske i tehničke svrhe. U najvažnije oblasti upotrebe ubrajaju se:

  • izvor energije: za zavarivanje i kao gorivo za rakete. U budućnosti se mnogo se očekuje od njegove upotrebe kao gorivo za mlazne motore, automobilske i druge motore koji sagorijevaju vodik ili gorive ćelije. Smatra se da će njegovo korištenje u budućnosti zamijeniti proizvode od nafte, jer njegovim sagorijevanjem nastaje samo voda, bez čađi i ugljik-dioksida. Međutim za razliku od nafte, vodik nije primarni izvor energije.
  • hidriranje uglja: Raznim hemijskim reakcija ugalj se pretvara u tečne ugljikovodike pomoću H2. Tako se naprimjer vještački mogu napraviti benzindiesel i lož ulje.

Danas oba navedena procesa nemaju veliku ekonomsku isplativost zbog visokih troškova. Međutim, to bi se drastično moglo promijeniti, kada se zalihe nafte u svijetu smanje i nestanu.

  • sredstvo za redukciju: H2 može reagirati sa oksidima metala i iz njih izvlačiti kisik. Time nastaje voda a metal se reducira. Proces se primjenjuje za topljenje ruda raznih metala, naročito kada se želi dobiti što čišći metal
  • Pomoću Haber-Boschovog procesa se iz dušika i vodika može načiniti amonijak koji se upotrebljava za pravljenje brojnih važnih spojeva poput vještačkih đubriva i eksploziva.
  • hidrogenacija masti: hidrogenizirana mast se često dobija iz biljnih ulja pomoću hidrogenacije. Pri tome se vodikom zasičuju dvostruke veze u lancima masnih kiselina u molekuli masti. Nastale masti imaju mnogo višu tačku topljenja, zbog čega proizvod postaje čvrst. Na ovaj način se proizvode margarin, vještački maslaci i slične masti. Međutim, ovim procesom se mogu stvarati i takozvane transmasne kiseline.
  • prehrambeni aditiv: vodik je dopušten kao aditiv i označava se E-brojem E949. Koristi se kao pokretački gas, gas za pakovanje i slično.[17]
  • rashladno sredstvo: zbog visokog toplotnog kapaciteta vodik u gasnom stanju se koristi u pogonima za proizvodnju struje kao rashladno sredstvo u turbogeneratorima. Naročlito se primjenjuje gdje je nemoguće ili nepraktično koristiti tečna rashladna sredstva. Visoki toplotni kapacitet se iskazuje na mjestima gdje gas ne može kretati ili se kreće vrlo sporo. Pošto mu je i toplotna provodljivost izuzetno visoka, tok gasovitog H2 se koristi za odvođenje termičke energije u velike rezervoare (npr. rijeke). U ovom slučaju vodik štiti postrojenja od pregrijavanja i povećava njihovu efikasnost. Prednost ove metode je da vodik, zbog vrlo malehne gustoće, koja se kreće u Reynoldsovim brojevima, struji laminarno do velikih brzina a pri tome ne pruža veliki otpor kao drugi gasovi.
  • kriogena tehnika: zbog visokog toplotnog kapaciteta tečni vodik je pogodan kao kriogen, odnosno kao rashladno sredstvo za ekstremno niske temperature. Tečni vodik može apsorbirati vrlo velike količine toplote, prije nego što mu se temperatura osjetno povisi. Na taj način se mogu održavati niske temperature čak i pri velikim vanjskim temperaturnim oscilacijama.
  • gas za balone i zračne brodove: prvu poznatu primjenu vodik je našao u balonima i zračnim brodovima kao gas za podizanje. Međutim, zbog lahke zapaljivosti mješavine zraka i H2 vrlo često su se dešavale nesreće. Najveća nesreća koja je se desila u historiji balona i zračnih brodova je nesreća njemačkog zračnog broda Dixmude 1923. godine kada je poginulo 55 osoba, dok je najpoznatija nesreća sigurno nesreća cepelina “Hindenburg” 1937. godine. Nakon te nesreće helij je potisnuo vodik kao noseći gas, a danas se vodik za podizanje balona koristi samo u izuzetnim slučajevima.

Želite da budete u toku sa ponudama i promocijama ? Registrujte se na našu newsletter listu.